22,237 research outputs found

    Anomalous Viscosity of an Expanding Quark-Gluon Plasma

    Get PDF
    We argue that an expanding quark-gluon plasma has an anomalous viscosity, which arises from interactions with dynamically generated color fields. We derive an expression for the anomalous viscosity in the turbulent plasma domain and apply it to the hydrodynamic expansion phase, when the quark-gluon plasma is near equilibrium. The anomalous viscosity dominates over the collisional viscosity for weak coupling and not too late times. This effect may provide an explanation for the apparent ``nearly perfect'' liquidity of the matter produced in nuclear collisions at the Relativistic Heavy Ion Collider without the assumption that it is a strongly coupled state.Comment: Final version accepted for publicatio

    A three-dimensional Monte Carlo calculation of the photon initiated showers and Kiel result

    Get PDF
    The Kiel experimental results indicate an existence of the ultra high-energy gamma-rays coming from Cyg. X-3. However the result indicates that the number of the muons included in the photon initiated shower is the same as the number included in the proton initiated showers. According to our Monte Carlo calculation as shown in the graph of underpart, the number of muons included in the photon initiated showers should be less than 1/15 of the photon's. The previous simulation was made under one dimensional approximation. This time the result of three dimensional calculation is reported

    Characterization of the initial filamentation of a relativistic electron beam passing through a plasma

    Full text link
    The linear instability that induces a relativistic electron beam passing through a return plasma current to filament transversely is often related to some filamentation mode with wave vector normal to the beam or confused with Weibel modes. We show that these modes may not be relevant in this matter and identify the most unstable mode on the two-stream/filamentation branch as the main trigger for filamentation. This sets both the characteristic transverse and longitudinal filamentation scales in the non-resistive initial stage.Comment: 4 page, 3 figures, to appear in PR

    Dielectric responses of the layered cobalt oxysulfide Sr_2Cu_2CoO_2S_2 with CoO_2 square-planes

    Full text link
    We have studied the dielectric responses of the layered cobalt oxysulfide Sr2_2Cu2_2CoO2_2S2_2 with the CoO2_2 square-planes. With decreasing temperature below the N\'eel temperature, the resistivity increases like a semiconductor, and the thermopower decreases like a metal. The dielectric constant is highly dependent on temperature, and the dielectric relaxation is systematically changed with temperature, which is strongly correlated to the magnetic states. These behaviors suggest that carriers distributed homogeneously in the paramagnetic state at high temperatures are expelled from the antiferromagnetically ordered spin domain below the N\'eel temperature.Comment: 3 pages, 4 eps figures, to be published in J. Appl. Phy

    Dark Matter Annihilation and the PAMELA, FERMI and ATIC Anomalies

    Full text link
    If dark matter (DM) annihilation accounts for the tantalizing excess of cosmic ray electron/positrons, as reported by the PAMELA, ATIC, HESS and FERMI observatories, then the implied annihilation cross section must be relatively large. This results, in the context of standard cosmological models, in very small relic DM abundances that are incompatible with astrophysical observations. We explore possible resolutions to this apparent conflict in terms of non-standard cosmological scenarios; plausibly allowing for large cross sections, while maintaining relic abundances in accord with current observations.Comment: 13 pages, 3 figures; published for publication in Physical Review

    Color Superconductivity in N=2 Supersymmetric Gauge Theories

    Full text link
    We study vacuum structure of N=2 supersymmetric (SUSY) QCD, based on the gauge group SU(2) with N_f=2 flavors of massive hypermultiplet quarks, in the presence of non-zero baryon chemical potential (\mu). The theory has a classical vacuum preserving baryon number symmetry, when a mass term, which breaks N=2 SUSY but preserves N=1 SUSY, for the adjoint gauge chiral multiplet (m_{ad}) is introduced. By using the exact result of N=2 SUSY QCD, we analyze low energy effective potential at the leading order of perturbation with respect to small SUSY breaking parameters, \mu and m_{ad}. We find that the baryon number is broken as a consequence of the SU(2) strong gauge dynamics, so that color superconductivity dynamically takes place at the non-SUSY vacuum.Comment: 15 pages, 9 figures, a figure and discussions added in Sec. 4, version to appear in Phys. Rev.

    Rescue with an anti-inflammatory peptide of chickens infected H5N1 avian flu

    Get PDF
    Chickens suffering from avian flu caused by H5N1 influenza virus are destined to die within 2 days due to a systemic inflammatory response. Since HVJ infection (1,2) and influenza virus infection (3,4) cause infected cells to activate homologous serum complement, the systemic inflammatory response elicited could be attributed to the unlimited generation of C5a anaphylatoxin of the complement system, which is a causative peptide of serious inflammation. In monkeys inoculated with a lethal dose of LPS (4 mg/kg body weight), inhibition of C5a by an inhibitory peptide termed AcPepA (5) rescued these animals from serious septic shock which would have resulted in death within a day (6). Therefore, we tested whether AcPepA could also have a beneficial effect on chickens with bird flu. On another front, enhanced production of endothelin-1 (ET-1) and the activation of mast cells (MCs) have been implicated in granulocyte sequestration (7). An endothelin receptor derived antisense homology box peptide (8) designated ETR-P1/fl was shown to antagonize endothelin A receptor (ET-A receptor) (9) and reduce such inflammatory responses as endotoxin-shock (10) and hemorrhagic shock (11), thereby suppressing histamine release in the circulation (12). Thus, we also administered ETR-P1/fl to bird flu chickens expecting suppression of a systemic inflammatory response

    Experience-Based Planning with Sparse Roadmap Spanners

    Full text link
    We present an experienced-based planning framework called Thunder that learns to reduce computation time required to solve high-dimensional planning problems in varying environments. The approach is especially suited for large configuration spaces that include many invariant constraints, such as those found with whole body humanoid motion planning. Experiences are generated using probabilistic sampling and stored in a sparse roadmap spanner (SPARS), which provides asymptotically near-optimal coverage of the configuration space, making storing, retrieving, and repairing past experiences very efficient with respect to memory and time. The Thunder framework improves upon past experience-based planners by storing experiences in a graph rather than in individual paths, eliminating redundant information, providing more opportunities for path reuse, and providing a theoretical limit to the size of the experience graph. These properties also lead to improved handling of dynamically changing environments, reasoning about optimal paths, and reducing query resolution time. The approach is demonstrated on a 30 degrees of freedom humanoid robot and compared with the Lightning framework, an experience-based planner that uses individual paths to store past experiences. In environments with variable obstacles and stability constraints, experiments show that Thunder is on average an order of magnitude faster than Lightning and planning from scratch. Thunder also uses 98.8% less memory to store its experiences after 10,000 trials when compared to Lightning. Our framework is implemented and freely available in the Open Motion Planning Library.Comment: Submitted to ICRA 201

    Scalar Mass Bounds in Two Supersymmetric Extended Electroweak Gauge Models

    Full text link
    In two recently proposed supersymmetric extended electroweak gauge models, the reduced Higgs sector at the 100-GeV energy scale consists of only two doublets, but they have quartic scalar couplings different from those of the minimal supersymmetric standard model. In the SU(2) X SU(2) X U(1) model, there is an absolute upper bound of about 145 GeV on the mass of the lightest neutral scalar boson. In the SU(3) X U(1) model, there is only a parameter-dependent upper bound which formally goes to infinity in a particular limitComment: 9 pages (6 figures not included), UCRHEP-T128 (July 1994
    • …
    corecore